Fractional Brownian Vector Fields

نویسندگان

  • Pouya Dehghani Tafti
  • Michael Unser
چکیده

This work puts forward an extended definition of vector fractional Brownian motion (fBm) using a distribution theoretic formulation in the spirit of Gel’fand and Vilenkin’s stochastic analysis. We introduce random vector fields that share the statistical invariances of standard vector fBm (self-similarity and rotation invariance) but which, in contrast, have dependent vector components in the general case. These random vector fields result from the transformation of white noise by a special operator whose invariance properties the random field inherits. The said operator combines an inverse fractional Laplacian with a Helmholtz-like decomposition and weighted recombination. Classical fBm’s can be obtained by balancing the weights of the Helmholtz components. The introduced random fields exhibit several important properties that are discussed in this paper. In addition, the proposed scheme yields a natural extension of the definition to Hurst exponents greater than one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A version of Hörmander’s theorem for the fractional Brownian motion

It is shown that the law of an SDE driven by fractional Brownian motion with Hurst parameter greater than 1/2 has a smooth density with respect to Lebesgue measure, provided that the driving vector fields satisfy Hörmander’s condition. The main new ingredient of the proof is an extension of Norris’ lemma to this situation.

متن کامل

Properties of local-nondeterminism of Gaussian and stable random fields and their applications

— In this survey, we first review various forms of local nondeterminism and sectorial local nondeterminism of Gaussian and stable random fields. Then we give sufficient conditions for Gaussian random fields with stationary increments to be strongly locally nondeterministic (SLND). Finally, we show some applications of SLND in studying sample path properties of (N, d)-Gaussian random fields. The...

متن کامل

Lacunary Fractional Brownian Motion

In this paper, a new class of Gaussian field is introduced called Lacunary Fractional Brownian Motion. Surprisingly we show that usually their tangent fields are not unique at every point. We also investigate the smoothness of the sample paths of Lacunary Fractional Brownian Motion using wavelet analysis.

متن کامل

Convergence to Weighted Fractional Brownian Sheets*

We define weighted fractional Brownian sheets, which are a class of Gaussian random fields with four parameters that include fractional Brownian sheets as special cases, and we give some of their properties. We show that for certain values of the parameters the weighted fractional Brownian sheets are obtained as limits in law of occupation time fluctuations of a stochastic particle model. In co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2010